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Abstract

The frequencies of vibration of bridges represent a kind of information that is most useful for many
purposes. Traditional vibration tests aimed at measuring the bridge frequencies often require on-site
installation of the measurement equipment, which is not only costly, but also inconvenient. As a first
attempt, the idea of using a vehicle moving over a bridge as a message carrier of the dynamic properties of
the bridge is theoretically explored in this paper. In order to identify the key parameters dominating the
vehicle–bridge interaction response, while illustrating the key phenomena involved, assumptions that lead
to closed-form solutions are adopted in the analytical study. For instance, a vehicle is modelled as a sprung
mass, and a bridge as a simply supported beam considering only the first mode of vibration. The concept of
extracting bridge frequencies from a passing vehicle, however, is not restricted by the aforementioned
assumptions, as will be demonstrated in an independent finite element study, which do not rely on any
particular assumptions. Concluding remarks are given concerning the feasibility of extracting the bridge
frequencies from the dynamic response of a passing vehicle, along with directions for future research
identified.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The measurement of the frequencies of vibration of a bridge, especially the one of the
fundamental mode, is a problem widely encountered in bridge engineering. When a new bridge is
completed, one is interested in the frequencies of vibration, at least the first few ones, since they
serve as useful parameters for comparison with those predicted by the numerical model. How well
the measured frequencies agree with the predicted ones is an indication of the appropriateness of
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the model used in analysis and design. Such information provides useful clues for calibrating
models used in related designs, concerning the uncertainties in material properties, structural
connectivity and boundary conditions. For the purpose of maintenance or rehabilitation, it is
often required that the frequencies of vibration of the bridge be measured, in addition to the
damping or other dynamic properties. In this regard, the frequencies of vibration, when
monitored over a long period, serve as a useful reference for evaluating the degradation in
stiffness or strength of the structure, and even for identifying possible damages in the structure,
say, due to long-term overloading and impacts by heavy trucks or earthquake tremors.
Traditionally, the measurement of the frequencies of a bridge requires some on-site

instrumentation, which may be costly, time-consuming, and even dangerous, depending on the
location and type of bridges. One common practice is to mount the vibration sensors, such as
seismometers, at different positions of the bridge and have them connected to a PC-driven data
acquisition system. For the case where the on-going traffic cannot be partially terminated for the
purpose of experimentation, the task of equipment mounting and data acquisition is generally
risky. Nevertheless, the on-going traffic can continuously input a certain amount of energy to the
bridge, usually large enough to excite the higher modes of vibration. Researches conducted along
this line, utilizing the on-going traffic or controlled vehicular excitations as the source of
excitation, include McLamore et al. [1], Abdel-Ghaffar et al. [2], Mazurek and DeWolf [3], Casas
[4], Paultre et al. [5], Ventura et al. [6], Conner et al. [7], and Farrar and James III [8], among
others.
For the case where the traffic can be temporarily terminated for experiment or before a bridge is

opened to the traffic, either an ambient vibration test (in the sense of no on-going traffic in this
paper), an impact test or a forced vibration test can be conducted on the bridge. In the ambient
vibration test, the frequencies of vibration of the bridge are measured with the bridge remaining
basically not excited by any artificial force [8–10]. For this reason, such tests may not yield results
with high amplitudes for the bridge frequencies, especially of the higher modes, due to the
involvement of environmental noises. For structures that are susceptible to wind loads, such as the
cable-stayed and suspension bridges, field measurements showing rather high peaks for the first
several frequencies were conducted by researchers for wind-induced vibrations [11,12]. In the
impact test, the bridge is excited by an impulse or impact force generated by devices such as heavy
hammers or by letting the rear wheels of a truck drop from a wooden block. The level of impact
forces is usually large enough to excite the first several modes [13,14]. An alternative is to conduct
a forced vibration test on the bridge, using devices such as the vibration shaker [8,9,15,16]. This
method allows us to identify the first few frequencies of vibration, as the input energy is usually
large enough to meet such a need.
Although the techniques for conducting the aforementioned tests are generally mature, the

effort, i.e., time, cost and manpower, required in conducting each test is considerable. The
objective of this paper is to explore the feasibility of extracting the frequencies of vibration of a
bridge, at least the fundamental one, from the dynamic response of a vehicle passing the bridge.
The idea is that a vehicle passing a bridge with a specific speed can excite the bridge to a certain
level, thereby playing the role of a vibration shaker. The vehicle in the meantime functions like a
moving sprung mass, whose dynamic response is affected by the dynamic properties of the
supporting bridge. Thus, if we can record the vertical dynamic (acceleration) response of the
vehicle during its passage of the bridge using seismometers installed inside the vehicle, we can

ARTICLE IN PRESS

Y.-B. Yang et al. / Journal of Sound and Vibration 272 (2004) 471–493472



analyze the frequency content of that response, eliminating those frequencies related to the vehicle
itself, and obtain frequencies associated with the supporting bridge.
There exists great academic interest to exploit the feasibility of extracting the bridge frequencies

from a passing vehicle, as it was not attempted before, and in this regard it is essential to start with
the first frequency in a preliminary, theoretical study, which forms the objective of this paper. In
order to identify the key parameters dominating the vehicle–bridge interaction (VBI) response,
while illustrating the key phenomena involved, assumptions that lead to closed-form solutions are
adopted in the analytical study. In this regard, the vehicle is modelled as a sprung mass and the
bridge as a simply supported beam considering only the first mode of vibration. However, in the
parallel, independent finite element analysis, virtually all the assumptions made in the analytical
study are either lessened or removed. Noteworthy is the fact that the key phenomena observed in
the simplified analytical study can find their counterpart in the finite element study.

2. Formulation of the analytical theory

Fig. 1 shows a vehicle of speed v, modelled as a lumped mass mv supported on a spring of
stiffness kv; moving across a simply supported bridge of length L with smooth pavement. If the
effect of damping of the bridge is ignored, the equations of motion for the sprung mass and the
bridge can be written as

mv .qv þ kvðqv � ujx¼vtÞ ¼ 0; ð1Þ

m .u þ EIu0000 ¼ fcðtÞdðx � vtÞ; ð2Þ

where qv denotes the vertical deflection of the sprung mass, d is a delta function, a dot and a
prime, respectively, denote differentiation with respect to time t and co-ordinate x of the beam,
and E denotes the elastic modulus, I the moment of inertia, uðx; tÞ the displacement, and m the
mass per unit length of the beam. The contact force fc existing between the sprung mass and the
beam can be expressed as

fcðtÞ ¼ kvðqv � ujx¼vtÞ þ mvg; ð3Þ

where g is the acceleration of gravity. It should be noted that the vehicle displacement qv is
measured from the static equilibrium position of the vehicle. Because of this, no gravity term
appears in Eq. (1). In contrast, the motion of the beam may be affected by the gravity load of the
vehicle mass, as implied by the contact force fc in Eq. (3).
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For a moving load problem, which is transient in nature, the response of the beam can be well
simulated by considering only the first mode of vibration [17]. In accordance, the displacement
uðx; tÞ of the beam can be approximated as

uðx; tÞ ¼ qbðtÞ sin
px

L

� �
; ð4Þ

where qbðtÞ denotes the generalized co-ordinate (or the midspan displacement) of the first mode
for the beam. Substituting the preceding expression for u into Eqs. (1) and (2), multiplying both
sides of Eq. (2) by sin ðpx=LÞ and integrating with respect to length L of the beam, one obtains

mv .qv þ ðo2vmvÞqv � o2vmv sin
pvt

L

� �h i
qb ¼ 0; ð5Þ

mL

2
.qb þ

mL

2
o2b þ o2vmv sin

2 pvt

L

� �� �
qb

� o2vmv sin
pvt

L

� �h i
qv ¼ �mvg sin

pvt

L

� �
; ð6Þ

where ov and ob denote the vibration frequency of the vehicle and the bridge, respectively,

ov ¼

ffiffiffiffiffiffi
kv

mv

s
; ob ¼

p2

L2

ffiffiffiffiffiffi
EI

m

r
: ð7Þ

In the following, approximate closed-form solutions will be sought for the vehicle and bridge
based on some practical assumptions.

3. Single-mode analytical solution

Assuming that the vehicle mass mv has an order of magnitude much less than the bridge mass
mL; i.e. mv=mL51; one can approximate Eq. (6) by the following

.qb þ o2bqb ¼
�2mvg

mL
sin

pvt

L

� �
: ð8Þ

By the use of zero initial conditions, one can obtain from the preceding equation the generalized
co-ordinate qb of the bridge as

qb ¼
Dst

1� S2
sin

pvt

L

� �
� S sin ðobtÞ

h i
; ð9Þ

where Dst; as given below, denotes approximately the static deflection of the midspan of the beam
under the gravity action of the mass mv at the same point

Dst ¼ �
2mvgL3

p4EI
; ð10Þ

which is very close to the exact value of �mvgL3=ð48EIÞ: The speed parameter S is defined as the
ratio of half the driving frequency pv=L to the bridge frequency ob; i.e.,

S ¼
pv

Lob

: ð11Þ
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Substituting Eq. (9) for the bridge co-ordinate qb into Eq. (5), one can solve from Eq. (5) the
vehicle response qv by Duhamel’s integral as

qvðtÞ ¼
ovDst

2ð1� S2Þ
1

ov

ð1� cosovtÞ �
ov cos 2pvt=L


 �
� cos ðovtÞ


 �
o2v � 2pv=L


 �2
(

�S
ov cos ðpv=LÞ � ob


 �
t


 �
� cos ðovtÞ


 �
o2v � ðpv=LÞ � ob


 �2 �
ov cos ðpv=lÞ þ ob


 �
t


 �
� cos ðovtÞ


 �
o2v � ðpv=LÞ þ ob


 �2
" #)

: ð12Þ

Evidently, the vehicle response is dominated by four specific frequencies, that is, the vehicle
frequency, ov; driving frequency of the moving vehicle, 2pv=L; and two shifted frequencies of the
bridge, ob � pv=L; ob þ pv=L: By letting m denote the frequency ratio of the bridge to the vehicle,
i.e., m ¼ ob=ov; and by using the definition for the speed parameter S; i.e., S ¼ pv=ðLobÞ; one can
rewrite the preceding equation as

qvðtÞ ¼
Dst

2ð1� S2Þ
ð1� cosovtÞ �

cos2pvt=L � cosovt

1� ð2mSÞ2
� S
cos ðob � pv=LÞt � cosovt

1� m2ð1� SÞ2

�

þS
cos ðob þ pv=LÞt � cosovt

1� m2ð1þ SÞ2

�
; ð13Þ

which can be differentiated once to yield the velocity of the vehicle as

’qvðtÞ ¼
Dstov

2ð1� S2Þ
sinovt þ

2mS sin 2pvt=L � sinovt

1� ð2mSÞ2
þ

�
S
mð1� SÞsin ðob � pv=LÞt � sinovt

1� m2ð1� SÞ2

�S
mð1þ SÞsin ðob þ pv=LÞt � sinovt

1� m2ð1þ SÞ2

�
; ð14Þ

and twice to yield the acceleration of the vehicle as

.qvðtÞ ¼
Dsto2v
2ð1� S2Þ

cosovt þ
ð2mSÞ2cos 2pvt=L � cosovt

1� ð2mSÞ2
þ

�
S
m2ð1� SÞ2cos ðob � pv=LÞt � cosovt

1� m2ð1� SÞ2

�S
m2ð1þ SÞ2cos ðob þ pv=LÞt � cosovt

1� m2ð1þ SÞ2

�
: ð15Þ

Apparently, the vertical displacement, velocity and acceleration of the vehicle depend on both
the parameters S and m: In contrast, the central displacement of the bridge, as given in Eq. (9),
depends only on the speed parameter S:
The maximum displacement response of the vehicle has been drawn with relation to the two

parameters S and m using a tri-phase plot in Fig. 2(a), of which the contour projection on the
horizontal plane was given in Fig. 2(b). As can be seen, the vehicle achieves its maximum in the
region with S ¼ 0:320:6 and m ¼ 0:521:5; especially in the vicinity of m ¼ 1: This can be easily
conceived, if one realizes that for m ¼ 1; i.e., when the vehicle frequency approaches the bridge
frequency, resonance will occur on the vehicle–bridge system, under which condition a significant
amount of kinetic energy will be transmitted to the vehicle, a smaller subsystem compared with
the bridge. For the purpose of extracting the bridge frequency from the vehicle response, it is
preferable that the vehicle response be enlarged as much as possible, or if the peak regions noted
above can be reached.
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Similarly, Figs. 3(a) and (b) show the tri-phase plot and contour lines, respectively, for the
vertical velocity of the vehicle. Clearly, the maximum response of the vehicle velocity occurs in the
region with S ¼ 0:320:6 and m ¼ 0:521:0 and in the vicinity of the point with S ¼ 0:3 and
m ¼ 1:0: In addition, Figs. 4(a) and (b) show the tri-phase plot and contour lines, respectively, for
the vehicle acceleration, which indicates that the maximum response occurs in two regions
indicated by (S ¼ 0:320:4; m ¼ 0:5521:5) and (S ¼ 0:320:5; m ¼ 020:5); the latter, however, can
hardly be reached in practice.
As was mentioned above, in extracting the bridge frequency from the vehicle response, higher

visibility can be achieved if the vehicle response can be magnified as much as possible. The above
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analyses offer some clues for selecting the related physical parameters of the sprung mass in
practice. In the following, we shall investigate the relative influence of each of four specific
frequencies on the response amplitude of the vehicle. To this end, one may rewrite the vehicle
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acceleration .qv tð Þ as follows

.qv tð Þ ¼
Dsto2v
2 1� S2ð Þ

A1 cosovt þ A2 cos
2pv

L
þ A3 cos ob �

pv

L

� �
þ A4 cos ob þ

pv

L

� �� �
; ð16Þ

where A1; A2; A3; A4 denote the relative magnitude of the contribution associated with each of the
four frequencies,

A1 ¼ 1�
1

1� 2mSð Þ2
�

S

1� m2 1� Sð Þ2
þ

S

1� m2 1þ Sð Þ2
; A2 ¼

2mSð Þ2

1� 2mSð Þ2

A3 ¼
Sm2 1� Sð Þ2

1� m2 1� Sð Þ2
; A4 ¼ �

Sm2 1þ Sð Þ2

1� m2 1þ Sð Þ2

: ð17Þ
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In Figs. 5–8, the amplitude given in Eq. (17) associated with each of the four major frequencies
has been plotted with respect to the speed parameter S and frequency ratio m; along with the
contour lines. Using the field data collected in Ref. [18], it can be shown that the maximum speed
parameter S encountered in practice is no greater than 0.3. In contrast, a wider range exists for the
frequency ratio m; which is assumed to be from 0 to 3 in this study. For the range of parametric
values considered, it can be observed that the term A4 remains the largest among the four
coefficients in Eq. (17), meaning that the peak response of the vehicle is dominated mainly by the
term associated with the rightward shifted frequency of the bridge, i.e., ob þ pv=L:
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4. Conditions of resonance

In this paper, the condition of resonance is defined such that any of the denominators in the
vehicle response equals zero. Under such a condition, the amplitude of the vehicle response
reaches a local maximum or a local peak in the frequency response plot. As can be seen from
Eq. (12), four conditions of resonance can occur on the VBI system, as will be described below.
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The first condition occurs when S ¼ 1; which implies that half the driving frequency of the
vehicle, pv=L; equals the fundamental frequency ob of the bridge, according to Eq. (11). Such a
condition can hardly be met in practice, as it implies an unreasonably high vehicle speed.
The second condition occurs when, o2v � ð2pv=LÞ2 ¼ 0 which can be further split into two as

ov þ 2pv=L ¼ 0 and ov � 2pv=L ¼ 0: The former can never be met mathematically. The latter can
be rewritten as Tv ¼ L=v; meaning that the time required for the vehicle to pass the bridge, L=v;
must equal the period Tv of the vehicle. For a vehicle with a vibration period of Tv ¼ 120:3 s
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passing a bridge, say, of length L ¼ 30m, the vehicle speed vmust be in the range of 30–90m/s (or
108–324 km/h), in order to excite the condition of resonance, which can hardly be met in practice.
The third condition occurs when o2v � pv=L � ob


 �2¼ 0; which can be factored as ov þ
ob � pv=L

 �

¼ 0 and ov � ob � pv=L

 �

¼ 0: The former cannot be met in practice, since half the
driving frequency, pv=L; is generally smaller than the bridge frequency ob: The latter condition
can be possibly met, if the bridge frequency ob happens to be slightly larger than the vehicle
frequency ov:
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The fourth condition occurs when o2v � ðpv=L þ obÞ
2 ¼ 0; which can be factored as ov þ

ob þ pv=L

 �

¼ 0 and ov � ob þ pv=L

 �

¼ 0: The former can never be met mathematically. The
latter condition can be possibly met, if the bridge frequency ob happens to be slightly smaller than
the vehicle frequency ov:
From the above analysis, it is concluded that if the bridge frequency ob is close to the vehicle

frequency ov; then the vehicle can be excited to resonance through adjustment of the vehicle speed
v; such that either of the following two conditions are met: ov � ðob � pv=LÞ ¼ 0 and ov � ðob þ
pv=LÞ ¼ 0; as will be demonstrated in the numerical study. Moreover, the vehicle response is
dominated by the four specific frequencies: ov; 2pv=L; ob � pv=L; and ob þ pv=L; using the
present single-mode approximation.

5. Simulation by the finite element method

The above analytical study, though unavoidably based on some assumptions, serves to identify
the key parameters dominating the VBI response. They serve as guidelines for simulating the same
problem using more sophisticated or realistic approaches, say, the finite element method or
experimental means. In fact, the idea of extracting bridge frequencies from the vehicle response is
not restricted by any of the assumptions adopted in the analytical study, since the bridge
frequencies, by nature, are always implied in the response of vehicles traveling over the bridge, as
will be demonstrated in the finite element simulation to follow, for which most assumptions will
be removed. The main question in developing the technology is how to extract or interpret the
bridge frequencies from the response ‘‘measured’’ (as in the field test) or ‘‘calculated’’ (as in this
pilot study) for the passing vehicle.
For the present purposes, let us discretize the beam into a number of elements and assume the

sprung mass to be acting at only one of the elements. The equations of motion for the sprung mass
mv and the bridge element directly in contact can be written as [19]

mv 0

0 ½mb	

" #
.qv

f .ubg

( )
þ

cv �cvfNgT

�cvfNg ½cb	 þ 2vmvfNg
@fNgT

@x
þ cvfNgfNgT

2
64

3
75 ’qv

f ’ubg

( )

þ
kv �kv Nf gT

�kvfNg ½kb	 þ v2mvfNg
@2fNgT

@x2
þ vcvfNg

@fNgT

@x
þ kvfNgfNgT

2
64

3
75 qv

fubg

( )
¼

0

�mvgfNgc

( )
;

ð18Þ

where {ub} denotes the displacement vector of the bridge element, and [mb], [cb] and [kb] denote the
mass, damping and stiffness matrices of the bridge element, {N} is a vector containing cubic
Hermitian interpolation functions associated with the transverse displacement of the element, and
fNgc represents the vector {N} evaluated at the co-ordinate position of the contact point of the
sprung mass.
By a condensation procedure, the vehicle displacement qv in Eq. (18) can be condensed into the

displacement vector {ub} of the element in contact, resulting in the so-called VBI element [19]. The
VBI element so derived can then be assembled with equations of other bridge elements not directly

ARTICLE IN PRESS

Y.-B. Yang et al. / Journal of Sound and Vibration 272 (2004) 471–493 483



in contact with the sprung mass to yield the system equations as

½M	f .qg þ ½C	f ’qg þ ½K 	fqg ¼ fFg; ð19Þ

where fqg denotes the system displacement vector, which contains all the bridge degrees of
freedom, {F} the corresponding force vector, and [M], [C], [K ] the mass, damping and stiffness
matrices of the system assembled from those of the VBI element and non-contact bridge elements.
Apparently, all the system matrices and vectors are functions of the acting position of the sprung
mass, which therefore are time-dependent.
The system equations as given in Eq. (19) can be solved by the Newmark b method of direct

integration [20]. Consider a typical time step from t to t þ Dt in the non-linear time–history. The
acceleration and velocity vectors of the system at t þ Dt can be discretized as follows:

f .qgtþDt ¼ a0ðfqgtþDt � fqgtÞ � a2f ’qgt � a3 .qf gt; ð20Þ

f ’qgtþDt ¼ f ’qgt þ a6f .qgt þ a7f .qgtþDt; ð21Þ

where the coefficients are

a0 ¼
1

bDt2
; a1 ¼

g
bDt

; a2 ¼
1

bDt
; a3 ¼

1

2b
� 1;

a4 ¼
g
b
� 1; a5 ¼

Dt

2

g
b
� 2

� �
; a6 ¼ Dtð1� gÞ; a7 ¼ gDt:

ð22Þ

In this study, b ¼ 0:25 and g ¼ 0:5 are selected, which implies a constant average acceleration
with unconditional numerical stability.
Substituting Eqs. (20) and (21) into the system Eq. (19), one can obtain after some

manipulations the following equivalent linear equations:

½ %K	tfqgtþDt ¼ f %FgtþDt; ð23Þ

where ½ %K	 represents the effective stiffness matrix and f %Fg the effective load vector, defined as
follows:

½ %K	t ¼ ½K 	t þ a0½M	t þ a1½C	t; ð24Þ

f %FgtþDt ¼ fFgtþDt þ ½M	tða0fqgt þ a2f ’qgt þ a3f .qgtÞ; ð25Þ

where ½K	t; ½M	t and ½C	t are, respectively, the stiffness, mass and damping matrices of the system
evaluated at time t. The force vector fFgtþDt denotes the external loads of the system at time
t þ Dt:
For a vehicle with an assumed speed v; the philosophy for solving the system Eq. (19) at each

time step, i.e., at time t þ Dt; is as follows: (1) Use the system matrices [M]t, [C]t, [K]t at time step t

to compute the effective stiffness matrix ½ %K	t: (2) Calculate the acting position xc of the sprung
mass. (3) Calculate the external force vector fFgtþDt and the effective load vector f %FgtþDt: (4)
Solve the equivalent system Eq. (23) for the displacements fqgtþDt: (5) Compute the system
accelerations and velocities from Eqs. (20) and (21). (6) Update the system matrices ½M	t; ½C	t; ½K 	t
for the next time step. (7) Repeat steps (1)–(6).
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6. Verification of accuracy of analytical solutions

In this section, the accuracy of the single-mode closed-form solution obtained for the VBI
system, in particular, the vehicle response, will be verified by the finite element solution for a
typical example. Consider a simply supported beam of length L ¼ 25m, with the following
properties: cross-sectional area A ¼ 2:0m2, moment of inertia I ¼ 0:12m4, mass per unit length
m ¼ 4800 kg/m, and elastic modulus E ¼ 27:5GN/m2. The following data are adopted for the
vehicle: mass mv ¼ 1200 kg, spring stiffness kv ¼ 500 kN/m, and zero damping. For this example,
the vehicle to bridge mass ratio is 1/100. In the finite element analysis, 10 beam elements are used
for the bridge. The fundamental vibration frequency of bridge is ob ¼ 2:08 Hz and the vehicle
frequency is ov ¼ 3:25 Hz:
For the case where the vehicle passes through the beam at a speed of v ¼ 10m/s, the vertical

displacements of the vehicle and the bridge midpoint obtained by the two approaches have been
plotted in Figs. 9(a) and (b), respectively. As can be seen from Fig. 9(b), the solutions obtained by
the two approaches show high degree of coincidence for the bridge response. Although slight
deviations exist between the two solutions obtained for the vehicle response, the analytical results
are considered acceptable for the purpose of identifying the key parameters involved.
The vertical velocity responses of the sprung mass and the midpoint of the beam are shown in

Figs. 10(a) and (b), respectively, and the acceleration responses in Figs. 11(a) and (b). As can be
seen, generally accurate solutions have been obtained for all cases by the single-mode analytical
approach, except for the midpoint bridge acceleration, where drastic oscillations due to higher
modes were missing, compared with the finite element solution. Aside from the higher modes,
both approaches reveal similar trends for the fundamental mode concerning the midpoint bridge
acceleration.
A general conclusion from the results shown in Figs. 9–11 is that the single-mode analytical

solutions can be reliably used to simulate both the vehicle and bridge responses, except the
midpoint acceleration of the bridge. Since the primary goal of this paper is to conceptually develop
a technique for extracting the fundamental frequency of the bridge from the vehicle response,
rather than from the bridge response, the inherent lack of capability of the single-mode approach
to deal with the higher modes of the bridge is not considered a handicap.

7. Extraction of fundamental frequency of bridge

In this section, we shall try to extract the fundamental frequency of the bridge from the time-
history vertical vibration response of the vehicle obtained by the finite element method, which is
more ‘‘realistic’’ than the analytical one due to inclusion of the high-mode effects. Again, the idea
is to demonstrate that the bridge frequency can be successfully extracted from the ‘‘simulated’’
vehicle response, before we go for the field test and extract the bridge frequency from the
‘‘recorded’’ response of a moving vehicle (that can be modelled as a sprung mass) during its
passage over a real bridge.
The frequency responses for the vertical acceleration of the vehicle and the bridge midpoint

have been plotted in Figs. 12(a) and (b), respectively, in which the fundamental frequency of the
bridge is indicated by a vertical dashed line. Zero damping is assumed for the bridge. As can be
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seen, both the single-mode and finite element approaches yield almost identical results, except that
the high-mode frequency contents were missing from the bridge response. Of interest is the fact
that half the driving frequency of the vehicle, pv=Lð¼ 0:2 HzÞ; can be observed as the lowest peak
in the bridge spectrum shown in Fig. 12(b).
From the vehicle acceleration spectrum shown in Fig. 12(a), one observes that the four system

frequencies dominating the vehicle response, i.e., 2pv=L; ob � pv=L; ob þ pv=L and ov; or 0.4,
1.88, 2.08 and 3.24Hz, appear as local peaks. Evidently, the bridge frequency ob is contained in
the vehicle response, but shifted by an amount pv=L due to the vehicle movement. It should be
noted that the case presented herein belongs to the non-resonant case discussed in Section 4. In
the following, some parametric studies will be conducted concerning the extraction of bridge
frequencies.

7.1. Effect of moving speed of the vehicle

The frequency responses of the vehicle acceleration computed for various vehicle speeds using
the single-mode approach and finite element approach have been plotted in Fig. 13(a) and (b),
respectively. As can be seen from part (a), the three system frequencies 2pv=L; ob � pv=L and
ob þ pv=L shift continuously as the vehicle speed v increases. The same shifting phenomenon can
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be observed from the finite element results shown in part (b). The highest peak in each
curve (i.e., for one specific speed) in part (b) represents the frequency of the bridge, but
with a plus shift of pv=L: Such an effect should be taken into account in extracting the bridge
frequency from the vehicle response. Moreover, the magnitude of the peak associated with the
bridge frequency increases as the vehicle speed increases, which means that, from the point
of field measurement, higher visibility can be achieved if the vehicle is allowed to move at a faster
speed.

7.2. Condition of resonance

Because the fundamental frequency of the bridge contained in the vehicle response shifts as the
vehicle speed v increases, there is a possibility for the occurrence of resonance if the shifted
frequency ob þ pv=L becomes equal or close to the vehicle frequency ov; as described in Section 4.
To investigate such an effect, we adjust the vehicle suspension stiffness kv to 296 kN/m, which
implies a vehicle frequency of ov ¼ 2:50Hz. If the vehicle speed is selected as 20m/s(=72km/h),
then the shifted frequency ob þ pv=L is 2.48Hz, which is quite close to the vehicle frequency ov:
The vertical acceleration of the vehicle obtained for v ¼ 20m/s by the finite element approach has
been plotted in Fig. 14, together with the response for a reference speed of v ¼ 10m/s. Clearly,

ARTICLE IN PRESS

Semi-analytical

0 0.5 1.5 2.5
Time (sec)(a)

-0.004

-0.002

0

0.002

0.004

V
el

oc
ity

 (
m

/s
)

Vehicle vertical velocity
FEM

Bridge midpoint  velocity
FEM
Analytical

1 2

0 0.5 1.5 2.5
Time (sec)(b)

-0.004

-0.002

0

0.002

0.004

V
el

oc
ity

 (
m

/s
)

1 2

Fig. 10. Vertical velocity response of (a) vehicle and (b) bridge midpoint (v ¼ 10m/s).

Y.-B. Yang et al. / Journal of Sound and Vibration 272 (2004) 471–493 487



resonance is excited on the vehicle when it moves at v ¼ 20m/s, as the response increases
following the movement of the vehicle. In contrast, the case with v ¼ 10m/s should be
regarded as a non-resonant case. From the frequency response plot given in Fig. 15, one observes
that higher visibility exists for the bridge frequency ob under the resonance condition (i.e. with
v ¼ 20m/s). Of interest is the fact that for the non-resonant case (i.e. v ¼ 10m/s), the bridge
frequency remains visible and can be clearly identified. This is the case commonly encountered in
practice.
For the present interest, the vertical response of the bridge midpoint under the same speed

v ¼ 20m/s was plotted in Fig. 16, together with that for v ¼ 10m/s. Clearly, no resonance exists
for the bridge at the speed v ¼ 20m/s. Such a result is not surprising, if one realizes that the kinetic
energy of the bridge (a larger subsystem) is dissipated by the vehicle (a smaller subsystem) in the
form of resonance, as the latter plays the role of a ‘‘tuned mass’’.
As a side note, if the first resonance condition mentioned in Section 4, i.e., S ¼ 1; is to be met

for the present case, the vehicle has to move at a speed of v ¼ 104m/s=374 km/h, which can
hardly be reached in practice. On the other hand, if use is to be made of the second resonance
condition, i.e., o2v � ð2pv=LÞ2 ¼ 0 or ov � 2pv=L ¼ 0; then the vehicle has to move at a speed of
v ¼ 62:5m/s=225 km/h, which is still too high to be adopted in a field test.
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7.3. Effect of damping of the bridge

To investigate the effect of damping of bridge on the vehicle response, three values of damping
ratio are considered for the bridge, i.e. 0%, 2% and 5%. The other data are the same as those used
in Section 6. From the result plotted in Fig. 17, it is certain that the visibility of the bridge
frequency decreases due to the presence of damping. Nevertheless, it can still be identified from
the vehicle acceleration spectrum with no difficulty.

7.4. Effect of vehicle traveling over a stiffer bridge

In practice, a well-designed bridge is so arranged that it cannot be easily excited by
vehicles traveling at ‘‘normal’’ speeds. This is why in some design codes, the fundamental
frequency of the highway bridge is recommended to lie outside of the vehicle frequencies ranging
between 2 and 5Hz. To reflect such a situation, we have chosen to increase the stiffness of the
bridge studied in Section to a value of EI ¼ 11:25GNm2, while keeping all the other data
unchanged. The first frequency of the bridge is ob ¼ 5:44Hz, which is much greater than the
vehicle frequency ov ¼ 3:25Hz. For the vehicle traveling with speed v ¼ 10m/s, no resonance will
be excited on the bridge. From the vehicle acceleration spectrum plotted in Fig. 18, it is
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confirmed that even for such a non-resonant case, the bridge frequency can be extracted with no
difficulty, though there is a substantial drop in the peak response compared with the previous
cases.
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8. Concluding remarks

This paper represents a preliminary study on the feasibility of extracting the fundamental
bridge frequency from the dynamic response of a vehicle passing over the bridge. As a first
attempt to identify the key parameters dominating the VBI response, some assumptions that lead
to closed-solution, are adopted. The results obtained from the single-mode approach have been
verified to be quite accurate by an independent finite element analysis, which does not rely on any
particular assumptions. From both the analytical and finite element studies, it is ascertained that
the bridge frequency is contained in and can be extracted from the vehicle acceleration spectrum,
but a correction must be made for the shifting effect. Higher vehicle speeds can result in higher
amplitudes for the bridge frequency, which implied higher visibility and therefore is good for
signal processing. The resonance condition for the moving vehicle to achieve the maximum
response was discussed in details, which, though, may not be encountered in practice. Noteworthy
is the fact that the visibility of the bridge frequencies remains good even for non-resonant case or
in the presence of bridge damping.
Future research should be conducted to address the factors not covered in this preliminary

study, including in particular the engine vibrations, pitching and rolling motions, damping and
suspension mechanisms of the vehicle, pavement roughness, multi-span effect, multi-lane effect of
the bridge, existing traffic effect, and so on.
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